66 research outputs found

    Physiological and biochemical responses of Quercus brantii seedlings to water deficit stress

    Get PDF
    Water shortage is one of the most important environmental stresses in Mediterranean regions. Poor seedling quality may account for the failure of oak regeneration. To determine the best seed origin of Quercus brantii, we investigated on seedlings collected from 20 mother trees in the Zagros Mountain forests 700 to 2200 m altitudes above sea level. Seedlings from different altitudes were irrigated at 25%, 50%, 75% and 100% of field capacity (FC), from June through the end of August 2005, and then their growth, physiological and biochemical parameters were examined. The results showed that the activity of peroxidase (PO), superoxide dismutase (SOD), and amylase, as well as the rate of membrane lipid peroxidation and the content of lignin were not affected by water deficit stress. However, the survival and growth rates were reduced below 50% FC. Seedlings originated from lower altitudes had higher growth and survival rate than those from higher altitudes below 50% of FC. The seedlings grown under 50% FC had also high phosphorus and water soluble carbohydrate contents. In conclusion, the present study showed that the seedlings from lower altitudes, which their mother trees grown under warmer climate condition in growth season, were more resistant to water deficit due to higher root to shoot ratio, phosphorus and water soluble carbohydrate contents under water deficits

    Distributed top-k aggregation queries at large

    Get PDF
    Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper introduces novel optimization methods for top-k aggregation queries in such distributed environments. The optimizations can be applied to all algorithms that fall into the frameworks of the prior TPUT and KLEE methods. The optimizations address three degrees of freedom: 1) hierarchically grouping input lists into top-k operator trees and optimizing the tree structure, 2) computing data-adaptive scan depths for different input sources, and 3) data-adaptive sampling of a small subset of input sources in scenarios with hundreds or thousands of query-relevant network nodes. All optimizations are based on a statistical cost model that utilizes local synopses, e.g., in the form of histograms, efficiently computed convolutions, and estimators based on order statistics. The paper presents comprehensive experiments, with three different real-life datasets and using the ns-2 network simulator for a packet-level simulation of a large Internet-style network

    Data sharing in DHT based P2P systems

    Get PDF
    International audienceThe evolution of peer-to-peer (P2P) systems triggered the building of large scale distributed applications. The main application domain is data sharing across a very large number of highly autonomous participants. Building such data sharing systems is particularly challenging because of the "extreme" characteristics of P2P infrastructures: massive distribution, high churn rate, no global control, potentially untrusted participants... This article focuses on declarative querying support, query optimization and data privacy on a major class of P2P systems, that based on Distributed Hash Table (P2P DHT). The usual approaches and the algorithms used by classic distributed systems and databases forproviding data privacy and querying services are not well suited to P2P DHT systems. A considerable amount of work was required to adapt them for the new challenges such systems present. This paper describes the most important solutions found. It also identies important future research trends in data management in P2P DHT systems

    As-Soon-As-Possible Top-k Query Processing in P2P Systems

    Get PDF
    International audienceTop-k query processing techniques provide two main advantages for unstructured peer-to-peer (P2P) systems. First they avoid overwhelming users with too many results. Second they reduce significantly network resources consumption. However, existing approaches suffer from long waiting times. This is because top-k results are returned only when all queried peers have finished processing the query. As a result, query response time is dominated by the slowest queried peer. In this paper, we address this users' waiting time problem. For this, we revisit top-k query processing in P2P systems by introducing two novel notions in addition to response time: the stabilization time and the cumulative quality gap. Using these notions, we formally define the as-soonas-possible (ASAP) top-k processing problem. Then, we propose a family of algorithms called ASAP to deal with this problem. We validate our solution through implementation and extensive experimentation. The results show that ASAP significantly outperforms baseline algorithms by returning final top-k result to users in much better times

    Heterogeneous nanofluids: natural convection heat transfer enhancement

    Get PDF
    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case
    corecore